Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype

نویسندگان

  • Akinori C Nagato
  • Frank S Bezerra
  • André Talvani
  • Beatriz J Aarestrup
  • Fernando M Aarestrup
چکیده

Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or treating asthmatic patients that require oxygen supplementation to reverse the hypoxemia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adenosine Triphosphate Promotes Allergen-Induced Airway Inflammation and Th17 Cell Polarization in Neutrophilic Asthma

Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist sura...

متن کامل

Inactivated Mycobacterium phlei inhalation ameliorates allergic asthma through modulating the balance of CD4+CD25+ regulatory T and Th17 cells in mice

Objective(s): Th2 response is related to the aetiology of asthma, but the underlying mechanism is unclear. To address this point, the effect of nebulized inhalation of inactivated Mycobacterium phlei on modulation of asthmatic  airway  inflammation was investigated. Materials and Methods: 24 male BALB/c mice were randomly divided into three groups: control group (Group A), asthma model group (G...

متن کامل

Anti-HMGB1 Neutralizing Antibody Ameliorates Neutrophilic Airway Inflammation by Suppressing Dendritic Cell-Mediated Th17 Polarization

We demonstrate that high mobility group box 1 protein (HMGB1) directs Th17 skewing by regulating dendritic cell (DC) function. First, our in vitro studies reveal that recombinant HMGB1 (rHMGB1) activates myeloid DCs to produce IL-23 in vitro, and rHMGB1-activated DCs prime naïve lymphocytes to produce the Th17 cytokine IL-17A. Second, we demonstrate that anti-HMGB1 neutralizing antibody attenua...

متن کامل

Wogonin Attenuates Ovalbumin Antigen-Induced Neutrophilic Airway Inflammation by Inhibiting Th17 Differentiation

Allergic airway inflammation is generally considered to be a Th2-type immune response. Recent studies, however, have demonstrated that Th17-type immune responses also play important roles in this process, particularly in the pathogenesis of neutrophilic airway inflammation, a hallmark of severe asthma. We scrutinized several Kampo extracts that reportedly exhibit anti-inflammatory activity by u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015